Structure of (Dithiopivalato)(trithioperoxypivalato)platinum(II), $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathbf{H}_{9} \mathrm{~S}_{2}\right)\left(\mathrm{C}_{5} \mathbf{H}_{9} \mathrm{~S}_{3}\right)\right]$

By E. Agostinelli, C. Bellitto, G. Dessy, V. Fares and A. Flamini
Istituto di Teoria e Struttura Elettronica dei Composti di Coordinazione del CNR, Area della Ricerca di Roma, 00016 Monterotondo (Roma), Italy

(Received 16 September 1983; accepted 5 December 1983)

Abstract

M_{r}=493.66\) monoclinic, $\quad C 2 / c, \quad a=$ 18.785 (4), $\quad b=6.204$ (2), $\quad c=27.372$ (5) $\AA, \quad \beta=$ 95.35 (2) ${ }^{\circ}, \quad V=3176$ (1) $\AA^{3}, \quad Z=8, \quad D_{m}=2.04$ (2), $D_{x}=2.07 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA, \quad \mu=$ $9.867 \mathrm{~mm}^{-1}, F(000)=1888$, room temperature, final $R=0.038$ for 1919 observed reflections. Four- and five-membered rings are present, with $\mathrm{Pt}-\mathrm{S}$ bond distances of $2.322(4), 2.323(3)$ and $2.238(4)$, 2.248 (3) \AA respectively and an $\mathrm{S}-\mathrm{S}$ bond of 2.037 (5) Å.

Introduction. In the course of our studies on metal chain compounds of $\mathrm{Pt}^{I I}$ with dithiocarboxylic acid ligands (Bellitto, Flamini, Piovesana \& Zanazzi, 1980; Bellitto, Dessy, Fares \& Flamini, 1981), we observed that $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ reacts with dithiopivalic acid in toluene under reflux to form the corresponding platinum(II) complex, the X-ray crystal structure of which is reported here.

Experimental. Dithiopivalic acid was prepared according to known procedures (Houben \& Pohl, 1907; Beiner \& Thuillier, 1972). The title compound was prepared by reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}(4.82 \mathrm{mmol})$ and the ligand $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCS}_{2} \mathrm{H} \quad(14.9 \mathrm{mmol})$ in toluene (100 ml). The mixture was refluxed under nitrogen for 3 d . The orange-red solution was then filtered and reduced in volume until a red oil was obtained, which was treated with hexane and the resulting solution cooled to 268 K . After 1 d , red-orange crystals were precipitated, filtered and collected. Analysis: calculated: Pt 39.53, C 24.34 , H 3.65, S 32.48 wt\%; found: Pt 39.44 , C 24.48 , H 3.68 , S $32.40 \mathrm{wt} \%$. $^{1} \mathrm{H}$ NMR $\left[\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \quad 1.72\right.$ and 1.38 p.p.m.]. D_{m} measured by flotation. Crystal $0.4 \times 0.11 \times 0.05 \mathrm{~mm}$. Syntex $P 2_{1}$ automated diffractometer, $\theta-2 \theta$ scan technique ($3^{\circ} \leq 2 \theta \leq 50^{\circ}$), graphite-monochromated radiation. Cell constants: least-squares refinement of the setting angles of 15 computer-centred reflections in the range $19^{\circ}<2 \theta<25^{\circ}$. Two standard reflections ($22 \overline{6}, 51 \overline{3}$) recollected every 30 reflections: no significant change. Total of 3164 reflections collected; 1919 unique reflections ($R_{\text {int }}=0.063$) with $I \geq 3 \sigma(I)$ were used (corrected for Lorentz and polarization effects) in

0108-2701/84/040619-02\$01.50
the structure solution and in the refinement of 144 parameters (ratio data/parameters $=13 \cdot 3$). Semi-empirical absorption correction (North, Phillips \& Mathews, 1968) based on a $360^{\circ} \psi$ scan around the scattering vector of the $13 \overline{3}$ reflection; max. value of the normalized correction factor $1 \cdot 59$. Structure solved by Patterson and Fourier techniques and refined by full-matrix least-squares method; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized; $w=1 / \sigma\left(F_{o}\right)^{2}$. All non-hydrogen atoms assigned anisotropic temperature factors. A difference map, computed at an intermediate stage of the refinement, revealed maxima at the expected positions for all the H atoms, which were included in their idealized geometrical positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$). R values converged to $R=0.038$ and $R_{w}=0.034$. In the final cycle of refinement, $(\Delta / \sigma)_{\text {max }}<0.3$ and $(\Delta \rho)_{\text {max }}$ $=0.18 \mathrm{e}^{-3}$. Calculations carried out on the HP21MX computer of the Laboratorio di Strutturistica Chimica del CNR, Area della Ricerca di Roma, using the set of crystallographic programs developed by R. Spagna. Neutral atomic scattering factors (f^{\prime} and $f^{\prime \prime}$ values) from International Tables for X-ray Crystallography (1974).

Discussion. Final atomic parameters are in Table 1, bond distances and angles in Table 2.* The crystal structure consists of discrete molecules, whose structure is shown in Fig. 1. The Pt atom is coordinated, in a tetrahedrally distorted square-planar arrangement, by four S atoms belonging to two different, four- and five-membered chelate rings, both lying on the same plane. The $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angles within the two rings are $73.0(1)$ and $93.6(1)^{\circ}$, and correspondingly two different $\mathrm{Pt}-\mathrm{S}$ bond lengths are found, i.e. 2.323 (4) and 2.242 (4) \AA (mean values) respectively. These can be compared with those found in other analogous PtS_{4} chromophores containing four- or five-membered rings (Fackler \& Thompson, 1981; Dessy \& Fares, 1980; Dessy, Fares, Bellitto \& Flamini, 1982).

[^0]© 1984 International Union of Crystallography

Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$, with e.s.d.'s in parentheses

$$
U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x			
	x	y	z	U_{eq}
$\mathrm{Pt}(1)$	$1159(1)$	$2101(1)$	$1183(1)$	$41(1)$
$\mathrm{S}(1)$	$1477(2)$	$4937(7)$	$694(1)$	$57(2)$
$\mathrm{S}(2)$	$957(2)$	$968(6)$	$374(1)$	$57(2)$
$\mathrm{S}(3)$	$792(3)$	$-964(6)$	$1510(1)$	$63(2)$
$\mathrm{S}(4)$	$1433(2)$	$3664(6)$	$1918(1)$	$52(2)$
$\mathrm{S}(5)$	$933(2)$	$-561(6)$	$2251(1)$	$57(2)$
$\mathrm{C}(1)$	$1248(7)$	$3403(23)$	$204(5)$	$49(8)$
$\mathrm{C}(2)$	$1277(8)$	$4046(27)$	$-325(5)$	$57(8)$
$\mathrm{C}(3)$	$636(14)$	$5407(58)$	$-482(8)$	$134(20)$
$\mathrm{C}(4)$	$1398(26)$	$2306(50)$	$-649(8)$	$186(30)$
$\mathrm{C}(5)$	$1896(20)$	$5650(69)$	$-353(9)$	$157(26)$
$\mathrm{C}(6)$	$1263(7)$	$1903(26)$	$2365(4)$	$50(7)$
$\mathrm{C}(7)$	$1392(7)$	$2581(18)$	$2908(4)$	$43(7)$
$\mathrm{C}(8)$	$758(10)$	$3977(31)$	$3026(6)$	$70(10)$
$\mathrm{C}(9)$	$1461(14)$	$666(34)$	$3243(6)$	$92(13)$
$\mathrm{C}(10)$	$2078(11)$	$3893(35)$	$2993(6)$	$81(12)$

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Pt}-\mathrm{S}(1)$	$2.322(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.51(2)$
$\mathrm{Pt}-\mathrm{S}(2)$	$2.323(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.50(3)$
$\mathrm{Pt} \mathrm{S}(3)$	$2.238(4)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.43(3)$
$\mathrm{P}-\mathrm{S}(4)$	$2.248(3)$	$\mathrm{C}(2)-\mathrm{C}(5)$	$1.54(3)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.667(13)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.54(1)$
$\mathrm{S}(2) \mathrm{C}(1)$	$1.687(14)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.53(2)$
$\mathrm{S}(3)-\mathrm{S}(5)$	$2.037(5)$	$\mathrm{C}(7)-\mathrm{C}(9)$	$1.50(2)$
$\mathrm{S}(4)-\mathrm{C}(6)$	$1.694(13)$	$\mathrm{C}(7)-\mathrm{C}(10)$	$1.52(2)$
$\mathrm{S}(5)-\mathrm{C}(6)$	$1.668(15)$		
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$	$73.0(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$109(1)$
$\mathrm{S}(3)-\mathrm{Pt}-\mathrm{S}(4)$	$93.6(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$115(1)$
$\mathrm{P}-\mathrm{S}(1)-\mathrm{C}(1)$	$88.3(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$108(1)$
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(1)$	$87.9(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$107(1)$
$\mathrm{Pt} \mathrm{S}(3)-\mathrm{S}(5)$	$106.1(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	$112(1)$
$\mathrm{P}-\mathrm{S}(4)-\mathrm{C}(6)$	$109.0(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$110(1)$
$\mathrm{S}(3)-\mathrm{S}(5)-\mathrm{C}(6)$	$108.1(4)$		
$\mathrm{S}(4)-\mathrm{C}(6)-\mathrm{S}(5)$	$123.2(7)$		

Fig. 1. A perspective view of the molecular structure with the labelling scheme.

Similar results have been observed in the analogous (dithiocumato)(trithioperoxycumato) platinum(II) by Fackler (1983).

Finally, the tert-butyl group does not seem to have any influence on the geometry of the rings and it behaves like the aryl substituent in the easy formation of dithio-trithio complexes.

References

Beiner, J. M. \& Thuillier, A. (1972). C. R. Acad. Sci. Sér. C, 274, 642.
Bellitto, C., Dessy, G., Fares, V. \& Flaminl, A. (1981). J. Chem. Soc. Chem. Commun. pp. 409-411.
Bellitto, C., Flaminl, A., Piovesana, O. \& Zanazzl, P. F. (1980). Inorg. Chem. 19, 3632-3636.

Dessy, G. \& Fares, V. (1980). Acta Cryst. B36, 2266-2269.
Dessy, G., Fares, V., Bellitto, C. \& Flamini, A. (1982). Cryst. Struct. Commun. 11, 1743-1745.
Fackler, J. P. (1983). Private communication.
Fackler, J. P. \& Thompson, L. D. (1981). Inorg. Chim. Acta, 48, 45-52.
houben, J. \& Pohl, H. (1907). Chem. Ber. 40, 1303-1307.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-103. Birmingham: Kynoch Press.
North, A. C. T., Phillips, D. C. \& Mathews F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1984). C40, 620-622

trans-(Acetylacetonato)dichloro(1,5-cyclooctadiene)iridium(III), $\left[\operatorname{IrCl} \mathbf{2}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]$

By Paul A. Tucker*

Research School of Chemistry, The Australian National University, GPO Box 4, Canberra, ACT 2601, Australia
(Received 15 November 1983; accepted 12 December 1983)

[^1]0108-2701/84/040620-03\$01.50
$0.71069 \AA, \quad \mu=10.36 \mathrm{~mm}^{-1}, \quad F(000)=1792, \quad T=$ 133 (2) K. Final $R=0.030$ for 2904 observed reflections. Mean bond lengths are $\mathrm{Ir}-\mathrm{Cl} 2.348, \mathrm{Ir}-\mathrm{O} 2.022$, $\operatorname{Ir}-\mathrm{C} 2.182$ and $\mathrm{C}=\mathrm{C} 1.369 \AA$. The molecular dimensions are compared with those in acetylacetonato(1,5 -cyclooctadiene) iridium(I).
© 1984 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39087 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: Abstract. $M_{r}=470 \cdot 4$, orthorhombic, Pnam, $a=$ $13.822(4), \quad b=17.117(5), \quad c=11.653$ (6) $\AA, \quad U=$ $2757.0 \AA^{3}, \quad Z=8, \quad D_{x}=2.27 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \bar{\alpha})=$

 * Present address: Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, England.

